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Abstract
NicheNet is a method to infer ligand activities from transcriptomics data. It relies on prior knowledge

which includes signaling networks and transcriptomics data from ligand perturbation experiments. Omni-
pathR provides a close integration with NicheNet: it provides methods to build the networks directly
from the original sources in a format suitable for NicheNet in a highly customizable way. OmnipathR
also provides a workflow template which connects OmnipathR and NicheNet methods from building the
prior knowledge up until the inference of ligand activities. With this pipeline the only thing users need to
provide is processed transcriptomics data.
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1 Status
The integration between NicheNet and OmniPath is a fresh development, as of May 2021 we have already
tested the basic functionality. To use the features described here you will need the latest git version of
OmnipathR, which we update often as we test and improve the elements of the pipeline. Bug reports,
questions and suggestions are welcome, please open an issue on github.

2 Introduction
The OmnipathR package contains methods to build NichNet[1] format networks from OmniPath[2] data and
from the resources used in the original NicheNet study. With a few exceptions, almost all resources used
originally by NicheNet are available by OmnipathR both in their raw format or after minimal preprocessing,
and in the format suitable for NicheNet. However, the networks built by OmnipathR are not completely
identical with the ones used by NicheNet due to the complexity of processing such a large amount of data.
The advantage of building these networks with OmnipathR is the transparent and reproducible process, as
the origin of any data record can be easily traced back to its original source. The data used in the NicheNet
publication is deposited at Zenodo. The other part of the prior knowledge used by NicheNet is a collection of
expression data from ligand perturbation experiments. In OmnipathR This is taken directly from the Zenodo
repository.

Apart from building the prior knowledge, OmnipathR provides a number of glue methods which connect
elements of the NicheNet workflow, ultimately making it possible to run everything with a single function
call, starting from the processed transcriptomics data and going until the predicted ligand activities. To
implement such a workflow we followed the analysis from the case study in the OmniPath paper and the
vignettes from NicheNet. The workflow consists of thin wrappers around some of the NicheNet methods.
Parameters for these methods can be provided from the top level call.

The transcriptomics data is the main input for the pipeline which is specific for the study. The transcriptomics
data can be processed by standard tools, such as DESeq[3] for bulk and Seurat[4] for single-cell transcriptomics.
For the latter more guidance is available in the NicheNet vignettes. The pipeline presented here only requires
the list of genes expressed in the transmitter and receiver cells (in case of autocrine signaling these are the
same); and a list with genes of interest. Genes of interest might come from the investigation subject or gene
set enrichment analysis (see an example here).

3 Run the workflow by a single call
The nichenet_main function executes all the workflow elements, hence it can be used to run the complete
workflow. Here we show it as an example, and in the next sections we take a closer look at the individual
steps. The first four arguments comes from the study data and objective, as discussed above. All parameters
of the workflow can be overridden here, for example, for the mlrbo_optimization we override the ncores
argument, and exclude CPDB from the signaling network and set the confidence threshold for EVEX.
library(OmnipathR)
library(nichenetr)

nichenet_results <- nichenet_main(
expressed_genes_transmitter = expressed_genes_transmitter,
expressed_genes_receiver = expressed_genes_receiver,
genes_of_interest = genes_of_interest,
background_genes = background_genes,
signaling_network = list(

cpdb = NULL,
evex = list(min_confidence = 1.0)

),
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gr_network = list(only_omnipath = TRUE),
n_top_ligands = 20,
mlrmbo_optimization_param = list(ncores = 4)

)

4 Only model building
Without transcriptomics data, it is possible to build a NicheNet model which later can be used for the ligand
activity prediction. Hence if the first four arguments above are NULL the pipeline will run only the model
building. Still, in this tutorial we wrap all blocks into eval = FALSE because the model optimization is
computationally intensive, it might take hours to run. To create the NicheNet model it’s enough to call
nichenet_main without arguments, all further arguments are optional override of package defaults.
nichenet_model <- nichenet_main()

5 Installing packages and loading nichenetr
Before running the pipeline it’s necessary to install nichenetr and its dependencies. The nichenetr package
is available only from github, while the dependencies are distributed in standard repositories like CRAN.
require(devtools)
install_github('saeyslab/nichenetr')

This procedure should install the dependencies as well. Some more specific dependencies are mlrMBO,
ParallelMap, ParamHelpers and smoof.

The nichenetr package is suggested by OmnipathR but not loaded and attached by default. This might
cause issues, for example NicheNet requires access to some of its lazy loaded external data. To address this,
you can either attach nichenetr:
library(nichenetr)

Or call a function which loads the datasets into the global environment, so NicheNet can access them:
nichenet_workarounds()

6 Testing the pipeline
With a fresh setup, as a first step it is recommended to test the pipeline, to make sure it is able to run in your
particular environment, all packages are installed and loaded properly. The optimization process takes hours
to run, while the test included in OmnipathR takes only around 10 minutes. This way you can avoid some
errors to come up after running the analysis already for many hours. Although it’s never guaranteed that
you won’t have errors in the pipeline as the outcome depends on the input data and certain conditions are
not handled in nichenetr, mlr and mlrMBO. If you get an error during the optimization process, start it over
a few times to see if it’s consistent. Sometimes it helps also to restart your R session. I would recommend to
try it around 10 times before suspecting a bug. See more details in the docs of nichenet_test.

The nichenet_test function builds a tiny network and runs the pipeline with a highly reduced number of
parameters and iteration steps in the optimization. Also it inputs dummy gene sets as genes of interest and
background genes.
require(OmnipathR)
nichenet_workarounds()
nichenet_test()
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7 Workflow steps
7.1 Networks
NicheNet requires three types of interactions: signaling, ligand-receptor (lr) and gene regulatory (gr). All
these are collected from various resources. In OmnipathR a top level function, nichenet_networks manages
the build of all the three networks. It returns a list with three data frames:
networks <- nichenet_networks()

Its only_omnipath argument is a shortcut to build all networks by using only OmniPath data:
networks <- nichenet_networks(only_omnipath = TRUE)

To the network building functions of OmniPath many further arguments can be provided, at the
end these are passed to import_post_translational_interactions, import_intercell_network and
import_transcriptional_interactions, so we recommend to read the manual of these functions. As
an example, one can restrict the signaling network to the resources SIGNOR and PhosphoSite, while for
ligand-receptor use only ligands and enzymes on the transmitter side and receptors and transporters on the
receiver side, while for gene regulatory network, use only the A confidence level of DoRothEA:
networks <- nichenet_networks(

only_omnipath = TRUE,
signaling_network = list(

omnipath = list(
resources = c('SIGNOR', 'PhosphoSite')

)
),
lr_network = list(

omnipath = list(
transmitter_param = list(parent = c('ligand', 'secreted_enzyme')),
receiver_param = list(parent = c('receptor', 'transporter'))

)
),
gr_network = list(

omnipath = list(
resources = 'DoRothEA',
dorothea_levels = 'A'

)
)

)

7.1.1 Signaling network

The function nichenet_signaling_network builds the signaling network from all resources with the default
settings. Each argument of this function is a list of arguments for a single resource. If an argument is set
to NULL, the resource will be omitted. In the example below we set custom confidence score thresholds for
ConsensusPathDB and EVEX, while use no data from Pathway Commons. In this case, the rest of the
resources will be loaded with their default parameters:
signaling_network <- nichenet_signaling_network(

cpdb = list(
complex_max_size = 1,
min_score = .98

),
evex = list(

min_confidence = 2
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),
pathwaycommons = NULL

)

Currently the following signaling network resources are available by OmnipathR: OmniPath, Pathway
Commons, Harmonizome (PhosphoSite, KEA and DEPOD), Vinayagam et al. 2011, ConsensusPathDB,
EVEX and InWeb InBioMap. Let’s take a closer look on one of the resource specific methods. The name of
these functions all follow the same scheme, e.g. for EVEX it is: nichenet_signaling_network_evex. From
most of the resources we just load and format the interactions, but a few of them accepts parameters, such as
confidence score thresholds or switches to include or exclude certain kind of records:

7.1.2 Raw data from network resources

evex_signaling <- nichenet_signaling_network_evex(top_confidence = .9)

The network format of NicheNet is very minimalistic, it contains only the interacting partners and the
resource. To investigate the data more in depth, we recommend to look at the original data. The methods
retrieving data from resources all end by _download for foreign resources and start by import_ for OmniPath.
For example, to access the EVEX data as it is provided by the resource:
evex <- evex_download(remove_negatives = FALSE)

7.1.3 Ligand-receptor interactions and gene regulation

These networks work exactly the same way as the signaling network: they are built by the
nichenet_lr_network and nichenet_gr_network functions. Currently the following ligand-receptor
network resources are available in OmnipathR: OmniPath, Ramilowski et al. 2015, Guide to Pharmacology
(IUPHAR/BPS); and in the gene regulatory network: OmniPath, Harmonizome, RegNetwork, HTRIdb,
ReMap, EVEX, PathwayCommons and TRRUST.

7.1.3.1 The OmniPath ligand-receptor network The ligand-receptor interactions from OmniPath
are special: these cover broader categories than only ligands and receptors. It includes also secreted enzymes,
transporters, etc. Also the import_intercell_network function, responsible for creating the OmniPath
LR network, by default returns the most complete network. However, this contains a considerable number
of interactions which might be false positives in the context of intercellular communication. It is highly
recommended to apply quality filtering on this network, using the quality_filter_param argument of the
functions in the NicheNet pipeline. The default settings already ensure a certain level of filtering, read
more about the options in the docs of filter_intercell_network. Passing the high_confidence = TRUE
argument by lr_network = list(omnipath = list(high_confidence = TRUE)) results a quite stringent
filtering, it’s better to find your preferred options and set them by quality_filter_param. An example how
to pass quality options from the top of the pipeline:
nichenet_results <- nichenet_main(

quality_filter_param = list(
min_curation_effort = 1,
consensus_percentile = 30

)
)

7.1.4 Small network

Initially for testing purposes we included an option to create a small network (few thousands interactions
instead of few millions), using only a high quality subset of OmniPath data. It might be interesting to try
the analysis with this lower coverage but higher confidence network:
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nichenet_results <- nichenet_main(small = TRUE)

The small network is not customizable, and it uses the high_confidence option in import_intercell_network.
You can build similar smaller networks by using the general options instead. Another option tiny generates
an even smaller network, however this involves a random subsetting, the outcome is not deterministic, this
option is only for testing purposes.

7.2 Ligand perturbation experiments
The expression data from the collection of over a hundred of ligand perturbation experiments is available
in the data deposited by NicheNet authors in Zenodo, in the expression_settings.rds file. The function
below downloads and imports this data:
expression <- nichenet_expression_data()

If there is any ligand which is missing from the ligand-receptor network, probably we want to remove it:
lr_network <- nichenet_lr_network()
expression <- nichenet_remove_orphan_ligands(

expression = expression,
lr_network = lr_network

)

7.3 Model optimization
In this step we optimize the parameters of the model and assign weights to the network resources, espe-
cially based on the ligand perturbation data. The nichenet_optimization function is a wrapper around
nichenetr::mlrmbl_optimization. The arguments for this function, and the objective function can be
overriden, for example it’s a good idea to set the cores according to our machine’s CPU count:
optimization_results <- nichenet_optimization(

networks = networks,
expression = expression,
mlrmbo_optimization_param = list(ncores = 4)

)

This function takes very long, even hours to run. Before it returns the results, it saves them into an RDS file.
This and the further RDS files are saved into the nichenet_results directory by default, it can be changed
by the option omnipath.nichenet_results_dir.
options(omnipath.nichenet_results_dir = 'my/nichenet/dir')
nichenet_results_dir()
# [1] "my/nichenet/dir"

7.4 Model build
The next major part is to build a model which connects ligands to targets, i.e. which genes are
affected in their expression by which of the ligands. Again, we use a wrapper around Nich-
eNet functions: the nichenet_build_model calls nichenetr::onstruct_weighted_networks and
nichenetr::apply_hub_corrections. If the argument weights is FALSE, the optimized resource weights
are not used, all resources considered with the same weight. The results are saved automatically into an RDS.
nichenet_model <- nichenet_build_model(

optimization_results = optimization_results,
networks = networks,

)
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7.5 Ligand-target matrix
Finally, we produce a ligand-target matrix, a sparse matrix with weighted connections from ligands to targets.
The function nichenet_ligand_target_matrix is a wrapper around nichenetr::construct_ligand_target_matrix.
As usual the results are exported to an RDS. This is the last step of the NicheNet model building process.
lt_matrix <- nichenet_ligand_target_matrix(

nichenet_model$weighted_networks,
networks$lr_network,
nichenet_model$optimized_parameters

)

7.6 Ligand activities
In this step we ues the NicheNet model to infer ligand activities from our transcriptomics data. The last
three arguments are all character vectors with gene symbols. For genes of interest, here we select 50 random
genes from the targets in the ligand-target matrix. Also just for testing purposes, we consider all genes in the
network to be expressed in both the transmitter and receiver cells.
genes_of_interest <- sample(rownames(ligand_target_matrix), 50)
background_genes <- setdiff(

rownames(ligand_target_matrix),
genes_of_interest

)
expressed_genes_transmitter <- union(

unlist(purrr::map(networks, 'from')),
unlist(purrr::map(networks, 'to'))

)
expressed_genes_receiver <- expressed_genes_transmitter

ligand_activities <- nichenet_ligand_activities(
ligand_target_matrix = lt_matrix,
lr_network = networks$lr_network,
expressed_genes_transmitter = expressed_genes_transmitter,
expressed_genes_receiver = expressed_genes_receiver,
genes_of_interest = genes_of_interest

)

Once the ligand activities inferred, we can obtain a list of top ligand-target links. It’s up to us how many of
the top ranking ligands, and for each of these ligands, how many of their top targets we include in this table:
lt_links <- nichenet_ligand_target_links(

ligand_activities = ligand_activities,
ligand_target_matrix = lt_matrix,
genes_of_interest = genes_of_interest,
n_top_ligands = 20,
n_top_targets = 100

)

8 Further steps
The NicheNet workflow in OmnipathR is implemented until this point. The results can be visualized by the
methods included in nichenetr, can be analysed for enrichment of functional properties, or the signaling
network connecting the ligands to targets can be reconstructed and analysed, as it’s shown in the OmniPath
case study.
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## R Under development (unstable) (2021-05-07 r80268)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Arch Linux
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## Matrix products: default
## BLAS: /usr/lib/libopenblasp-r0.3.14.so
## LAPACK: /usr/lib/liblapack.so.3.9.1
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## locale:
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##
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##
## other attached packages:
## [1] rmarkdown_2.7 OmnipathR_2.99.19 testthat_3.0.2 devtools_2.4.1 usethis_2.0.1 setwidth_1.0-4 colorout_1.2-2
##
## loaded via a namespace (and not attached):
## [1] utf8_1.2.1 reticulate_1.20 tidyselect_1.1.1 htmlwidgets_1.5.3 grid_4.2.0 Rtsne_0.15 pROC_1.17.0.1 munsell_0.5.0 codetools_0.2-18
## [10] ica_1.0-2 future_1.21.0 miniUI_0.1.1.1 withr_2.4.2 colorspace_2.0-1 logger_0.2.0 knitr_1.33 rstudioapi_0.13 Seurat_4.0.1
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## [28] ipred_0.9-11 xfun_0.22 randomForest_4.6-14 R6_2.5.0 bitops_1.0-7 spatstat.utils_2.1-0 cachem_1.0.4 promises_1.2.0.1 scales_1.1.1
## [37] nnet_7.3-16 gtable_0.3.0 globals_0.14.0 processx_3.5.2 goftest_1.2-2 timeDate_3043.102 rlang_0.4.11 BBmisc_1.11 splines_4.2.0
## [46] lazyeval_0.2.2 ModelMetrics_1.2.2.2 spatstat.geom_2.1-0 checkmate_2.0.0 yaml_2.2.1 reshape2_1.4.4 abind_1.4-5 backports_1.2.1 httpuv_1.6.0
## [55] Hmisc_4.5-0 caret_6.0-86 DiagrammeR_1.0.6.1 tools_4.2.0 lava_1.6.9 ggplot2_3.3.3 ellipsis_0.3.2 spatstat.core_2.1-2 jquerylib_0.1.4
## [64] RColorBrewer_1.1-2 proxy_0.4-25 sessioninfo_1.1.1 ggridges_0.5.3 Rcpp_1.0.6 plyr_1.8.6 base64enc_0.1-3 visNetwork_2.0.9 progress_1.2.2
## [73] purrr_0.3.4 ps_1.6.0 prettyunits_1.1.1 rpart_4.1-15 deldir_0.2-10 pbapply_1.4-3 cowplot_1.1.1 zoo_1.8-9 nichenetr_1.0.0
## [82] SeuratObject_4.0.0 ggrepel_0.9.1 cluster_2.1.2 fs_1.5.0 magrittr_2.0.1 data.table_1.14.0 scattermore_0.7 lmtest_0.9-38 RANN_2.6.1
## [91] fitdistrplus_1.1-3 matrixStats_0.58.0 pkgload_1.2.1 evaluate_0.14 hms_1.0.0 patchwork_1.1.1 mime_0.10 xtable_1.8-4 jpeg_0.1-8.1
## [100] readxl_1.3.1 gridExtra_2.3 compiler_4.2.0 tibble_3.1.1 KernSmooth_2.23-20 crayon_1.4.1 htmltools_0.5.1.1 mgcv_1.8-35 later_1.2.0
## [109] Formula_1.2-4 tidyr_1.1.3 lubridate_1.7.10 MASS_7.3-54 rappdirs_0.3.3 Matrix_1.3-3 readr_1.4.0 cli_2.5.0 parallel_4.2.0
## [118] gower_0.2.2 igraph_1.2.6 pkgconfig_2.0.3 foreign_0.8-81 plotly_4.9.3 spatstat.sparse_2.0-0 recipes_0.1.16 xml2_1.3.2 foreach_1.5.1
## [127] bslib_0.2.4 prodlim_2019.11.13 stringr_1.4.0 callr_3.7.0 digest_0.6.27 sctransform_0.3.2 RcppAnnoy_0.0.18 spatstat.data_2.1-0 cellranger_1.1.0
## [136] leiden_0.3.7 htmlTable_2.1.0 uwot_0.1.10 curl_4.3.1 shiny_1.6.0 lifecycle_1.0.0 nlme_3.1-152 jsonlite_1.7.2 limma_3.47.13
## [145] desc_1.3.0 viridisLite_0.4.0 fansi_0.4.2 pillar_1.6.0 lattice_0.20-44 fastmap_1.1.0 httr_1.4.2 pkgbuild_1.2.0 survival_3.2-11
## [154] glue_1.4.2 remotes_2.3.0 fdrtool_1.2.16 png_0.1-7 iterators_1.0.13 sass_0.3.1 class_7.3-19 stringi_1.5.3 latticeExtra_0.6-29
## [163] caTools_1.18.2 memoise_2.0.0 dplyr_1.0.6 irlba_2.3.3 e1071_1.7-6 future.apply_1.7.0
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